LA-UR-10-02237

Approved for public release;
distribution is unlimited.

Title: | Petascale visualization: Approaches and initial results

Author(s): | James P. Ahrens 113788 CCS-1

Li-Ta Lo 194699 CCS-1

Boonthanome Nouanesengsy Ohio State University
John Patchett 148176 CCS-1

Allen McPherson 107908 CCS-1

Intended for: | \Workshop on Ultrascale Visualization, pp.24-28, 16 Nov.
2008

ﬂ?
» Los Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Petascale Visualization:
Approaches and Initial Results

James Ahrens, Li-Ta Lo, Boonthanome Nouanesengsy, John Patchett and Allen McPherson
Los Alamos National Laboratory
Los Alamos, NM 87545
Email: ahrens@lanl.gov

Abstract—With the advent of the first petascale supercomputer,
Los Alamos’s Roadrunner, there is a pressing need to address how
to visualize petascale data. The crux of the petascale visualization
performance problem is interactive rendering, since it is the most
computationally intensive portion of the visualization process. For
terascale platforms, commodity clusters with graphics processors
(GPUs) have been used for interactive rendering. For petascale
platforms, visualization and rendering may be able to run
efficiently on the supercomputer platform itself. In this work,
we evaluated the rendering performance of multi-core CPU and
GPU-based processors. To achieve high-performance on multi-
core processors, we tested with multi-core optimized raytracing
engines for rendering. For real-world performance testing, and
to prepare for petascale visualization tasks, we interfaced these
rendering engines with VITK and ParaView. Initial results show
that rendering software optimized for multi-core CPU processors
provides competitive performance to GPUs for the parallel
rendering of massive data. The current architectural multi-
core trend suggests multi-core based supercomputers are able
to provide interactive visualization and rendering support now
and in the future.

I. INTRODUCTION

The Roadrunner supercomputer at Los Alamos National
Laboratory recently achieved a long-sought supercomputing
goal: performing more than a thousand trillion operations per
second, or a petaflop. Roadrunner is the first supercomputer
to use a hybrid processor architecture, which is based on
both AMD Opteron processors and the IBM Cell Broad-
band Engine processing elements[3], [11]. The Cell processor
is a collection of multi-core processors that achieves high-
performance through the placement of multiple processing-
cores on the same chip. This architectural trend drives all
areas of computing, for example, there are currently tens of
processors in a multi-core general-purpose CPU and hundreds
of processors in a multi-core GPU. At the petascale range,
supercomputers will generate an unprecedented amount of
scientific data that will need to be visualized and analyzed
in order to understand the science in the simulation results.
This paper explores if we can efficiently run our visualization
software on the supercomputing platform.

The data understanding process is composed of a number
of activities including analysis and statistics, visualization and

IEEE Catalog Number: CFPOSUVS
ISBN: 978-1-4244-2861-8
Library of Congress: 2008907542

rendering. Visualization algorithms map simulation data to a
visual representation. For example, an isosurfacing algorithm
takes simulation data and produces contour geometry. Visual-
ization, analysis and statistics already run fairly efficiently on
most supercomputing platforms. Running these algorithms on
the supercomputer, as part of parallel server, is an effiective
way to visualize data without the need to move simulation
data off the platform. Rendering maps geometry to imagery
on the screen. On many previous supercomputing platforms it
was difficult to interactively render directly on the platform.
We define rendering for interactive exploration as 5-10 frames
per second on a 1K by 1K pixel image at a minimum. We
believe 60 frames per second is required for stereo rendering.
Typically this performance has been provided by commodity
clusters with attached graphics cards.

For petascale platforms, visualization and rendering may
be able to run efficiently on the supercomputer platform
instead of a visualization cluster. The contribution of this
paper is a method to run interactive visualization on a multi-
core based supercomputer using multi-core optimized ray-
tracing. We tested rendering on multi-core CPU and GPU-
based processors. Full testing of rendering using raytracing on
Roadruuner using the Cell processor is currently in progress
but not reported in this paper. For real-world performance
testing, and to prepare for petascale visualization tasks, we
started interfacing these rendering engines with VTK and
ParaView (PV). Specifically we have an intial prototype using
the Manta raytracing engine[2], that is optimized for multi-
core rendering, integrated in VTK/PV. These additions will
be available soon in the VTK/PV repositories for community
use.

II. RELATED WORK

As supercomputing technology has evolved from gigaflops
to teraflops[5] and then to petaflops, visualization approaches
have evolved as well. In the past decade, going from gigaflops
to teraflops, visualization hardware for supercomputers went
from SGI Infinite Reality graphics hardware[9] to commod-
ity clusters with attached graphics cards[6]. The purpose of
specialized graphics hardware in these systems was to support
fast parallel rendering.

There are a number of different approaches to parallel
rendering. Molnar et. al.[8] describe a sorting classification
that characterizes when data is ‘“sorted” to screen space.

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 08,2010 at 17:46:34 UTC from |IEEE Xplore. Restrictions apply.

Geometry sorting is identified as sort-first, scan-line sorting as
sort-middle and image sorting as sort-last. A sort-last rendering
approach is used in most parallel commerical and open-
source visualization tools. Sort-last approaches do not require
changes to the rendering software as is likely in the sort-middle
case. Sort-last approaches also communicate load-balanced
fixed-size images between processors. Load imbalance is a
significant disadvantage of the sort-first case. Binary-swap[7]
and direct-send[10] are two representative sort-last approaches.
There are a number of different optimization approaches for
sort-last rendering including network optimizations[12] and
compression schemes[1].

III. APPROACH

Our approach to running visualization and rendering tasks
on supercomputers was to evaluate the core components of the
visualization process that are sufficiently different on super-
computers than on visualization clusters. We identified parallel
rendering and specifically the rendering portion of the parallel
rendering process, as the key bottleneck to interactive visu-
alization on a supercomputer. This is where we focused our
effort. We studied and evaluated two different rendering tech-
niques: scan conversion approaches and raytracing approaches.
Traditional rendering algorithms scan convert polygons to an
image. To document the current state of the art we tested both
software (Mesa) and hardware-accelerated (NVidia graphics
card) scan-conversion approaches. In addition, we explored
using raytracing techniques for polygonal rendering. Raytrac-
ing techniques offer more accurate results through the use of
superior lighting models that incorporate reflection, refraction
and shadows. Raytracing is inherently parallel and there are a
number of high-performance multi-core implementations. We
chose the open-source Manta raytracer[2] developed at the
University of Utah for our work.

We use VTK as our visualization software as it already
supports scan-conversion based rendering. The difficulty was
replacing the OpenGL scan line renderer in VTK with the
Manta raytracer.

IV. IMPLEMENTATION

We produced a version of VTK with the Manta raytracer
replacing the OpenGL renderer. In this section we describe
this implementation.

A useful feature of VTK is its rendering abstraction. Instead
of a direct OpenGL interface, VTK offers a set of rendering
classes that abstract the rendering process. Thus to have
a raytracing rendering engine we needed to interface the
raytracer to the VTK rendering interface.

There were three major issues:

A. Issue 1: Manta is a multi-threaded program

Manta is a multi-threaded program targeted to run efficiently
on multi-core architectures. In order to maintain the correct-
ness of the raytracer and thread safety, any modification to the
state of the raytracer can only happen at certain barrier points
in its main rendering loop. These necessary state modifications

VTK Manta

Vitk Objects c— A Manta Geometry
A\

Renderer Ray Tracer

(-

Image Image

Fig. 1. A visual outline of the VTK Manta implementation challenges

include adding and deleting geometric primitives and changing
the position of the lights and camera. Manta provides a set
of callback mechanisms to access these barrier points. We
made use of these callbacks to synchronize the VTK rendering
pipeline and Manta. We also made use of a similar mechanism
to pause the raytracer after each frame is generated.

B. Issue 2: Mapping VTK objects to Manta

Most of the mapping process from VTK to Manta polygonal
data structures was straight-forward. We focused on triangle-
based polygonal structures. One issue that needed to be
addressed was mapping via a lookup table to color a polygonal
surface by a scalar field. For example, an isosurface in a fluid
simulation may be generated with a certain scalar value, say,
the temperature of the fluid. Each cell or point of the isosurface
may then be colored according to another scalar value, such as
the magnitude of the velocity of the fluid. Generally, we can
choose to give one color per cell or per point. When we color
by cell, the same color is assigned to each point in the cell,
thus, the whole cell has one uniform color. When we color by
point, each point in the cell is assigned a different color and
the cell is then smoothly shaded.

OpenGL renderers implement this feature in one of two
ways. It can assign colors returned from the color map directly
to the triangles or it can implement it through texture mapping.
With a texture map, the renderer treats the color map as a
1D texture map and the texture coordinate is the scalar value
used to index the color map. The renderer only has to assign
each vertex the color map key as texture coordinate and the
rendering hardware will do the rest of the job.

In Manta, we could have implemented cell coloring by
assigning each triangle in the mesh its own material with a
constant color. The problem with this approach is it needs
to create a large number of Manta materials and associated
textures and this can degrade performance. It also fails to solve
the problem of coloring by point since there is no concept of
“per vertex” material for a triangle mesh in Manta; we can
only assign materials on a triangle by triangle basis.

For scan-conversion, smooth shading is actually a weighted
average of vertex color by using the barycentric coordinates
of the interior point as a weight. In Manta, texture coordinates

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 08,2010 at 17:46:34 UTC from |IEEE Xplore. Restrictions apply.

Fig. 2. A contour in a DNS-based turbulance simulation colored by velocity
magnitude using a VTK-based Manta renderer

for an interior point of a triangle are calculated in exactly the
same way. Thus we can use texture coordinate to calculate
triangle interior point colors. There is no overhead with this
method since texture coordinates are calculated at each ray-
trangle intersection point at the shading phase anyway, even
when we use a “constant color” for a triangle.

C. Issue 3: Depth buffer

A depth buffer is used in sort-last rendering algorithms
to compute an ordering of different processors pixel values.
To complete the VTK interface, Manta needed to produce a
depth buffer. For a raytracer, the first ray/polygon intersection
location can be used as a depth value. In Manta this value is
calculated as part of the calculation of a pixel value. Additional
coding was required to return it as a depth buffer value.

V. RESULTS

In this section, we assess whether rendering on a supercom-
puter is a viable option. The standard approach for parallel
rendering is a sort-last approach. Sort-last parallel rendering
algorithms have two stages. The first stage is a rendering stage
in which the processor renders its assigned geometry into a
distance/depth buffer and image buffer. The second stage is a
networking/compositing stage. Image buffers are composited
together to create a complete result based on their associated
depth buffers. In our performance analysis we will assume
that the stages are pipelined and therefore performance is
limited by the slower stage[4]. For rendering, we tested the
performance of GPU and a 16-way multi-core CPU with both
Mesa and Manta. We also tested compositing performance on
Infiniband 1 and 2 network.

A. Rendering performance

We ran the GPU rendering test on an Nvidia Quadro FX
5600 with 1.5 GB of memory. We placed the GPU in a dual
socket quad-core Opteron machine running at 2.0 GHz with
16GB of main memory. The rendering performance for a GPU
in frames per second when rendering a million polygons to a
1K by 1K image are shown in Table I.

The timings of Mesa and Manta-based rendering were run
on a quad socket, quad core Opteron (for a total of 16 cores)

Frames

Rendering per

Type Software | Architecture second

Scan conversion | OpenGL Nvidia Quadro FX 5600 18.6
TABLE I

1 MILLION POLYGONS RENDERING TO A 1KX1K IMAGE

machine running at 1.1Ghz. The machine has a total 32 GB of
main memory. For the multi-core tests we ran on 1, 2, 4, 8 and
16 cores. To achieve parallel rendering with Mesa, we used
VTK to have one core partition the geometry and distribute
it to other cores. All cores rendered their geometry, and then
their images were composited together. The maximum time
for any processor to render and composite is reported as the
Mesa rendering performance.

Frames per second
Type Sw Arch. 1 2 4 8 16
Scan conv. | Mesa 4 quad core | 0.7 | 1.2 | 20 | 3.2 4.6
Raytracing | Manta | 4 quad core | 1.6 | 2.8 | 5.6 | 109 | 194

TABLE I
1 MILLION POLYGONS RENDERING TO A 1KX1K IMAGE

The rendering performance for both Mesa and Manta runs
in parallel on 1, 2, 4, 8 and 16 cores in terms of frames per
second when rendering a million polygons are shown in Table
II. Table I shows a GPU performance of approximately 19
frames per second. Mesa performance on 16 cores was only
4.6 frames per second. Thus these results support the idea
that given the choice between a commodity graphics cluster
and a Mesa-based rendering supercomputer, a graphics cluster
is required for high-performance interactive visualization and
rendering. Manta performance on 16 cores, on the other hand,
performed similarly to the real-world performance on a GPU:
19 frames per second. This result is significant because it
suggests that multi-core software based rendering approaches
may be viable alternatives to GPUs. Recall that Manta is a
multi-threaded application designed to run effciently on multi-
core processors. If Mesa were re-written to target efficient
performance on multi-core processors, similiar performance
results might be achieved.

B. Compositing performance

The compositing algorithm is an implementation of a
binary-swap algorithm that is available in the parallel directory
of VTK. We ran on a 128 node cluster with 1 process per node.
Figure 3 and 4 show the compositing performance in frames
per second for 1K by 1K image on the Infiniband 1 and 2,
respectively. The blue lines show the network performance
of the compositing step (i.e. without including the CPU time
needed to composite images) while the red lines show the
performance of the complete algorithm. Each pixel of the 1K
by 1K image contained 5 floats, 1 each forr, g, b, o and z. This
totals to 20 MB/image. It is important to note that compositing
performance of 128 nodes is 10-15 frames per second. Recall

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 08,2010 at 17:46:34 UTC from |IEEE Xplore. Restrictions apply.

50.00

45.00

40.00

—&— Network only - Frames

35.00 per second

~—#—Frames per second

30.00

25.00

20.00

15.00

10.00

5.00

0.00

Fig. 3. Compositing Results for IB-1

50.00

45.00

40.00

—&—Network only - Frames per

35.00 second

~—Frames per second

30.00

25.00

20.00

15.00
10.00
5.00

0.00

Fig. 4. Compositing Results for IB-2

that we achieve multi-core CPU software-based rendering per-
formance of 19 frames per second. Therefore, in this test, the
standard binary-swap algorithm for compositing/networking
performance is the limiting pipelined performance factor and
not the software-based rendering!

VI. DISCUSSION

Our initial results suggest that software rendering on multi-
core nodes of a supercomputer is a viable option for visualiza-
tion. Therefore, we must consider the implications of using our
supercomputers instead of using separate visualization clusters
for this task. There are advantages and disadvantages to both
approaches.

One of the main disadvantages of using the supercomputer
for visualization is the cost to port rendering to the platform.
Production quality interactive visualization and rendering on
supercomputers will require a concerted software engineering
effort. Portions of supercomputers will need to be set aside for
interactive usage and this has historically been a challenge.

There are many advantages of using the supercomputer for
visualization. We can scale up to use the entire supercomputer
platform to visualize petascale results. We can visualize sim-
ulation results as they are generated in memory. This is an
important approach as we start computing at the petascale.
Petascale supercomputers will generate many more results
in memory than can be saved to disk. For example, on
Roadrunner, the data transfer rate to disk is 1 Gbyte/sec but
data can be generated at 100 Gbytes/sec from a triblade (a
collection of 32 cell processors) to memory.

Using visualization clusters has its own set of disadvantages.
The cost of purchasing and maintaining visualization clusters
and their associated networking and I/O infrastructure is
large. The time spent moving data from supercomputers to
visualization clusters is also large and increases the latency of
the visualization and analysis cycle.

The advantages of a visualization cluster can not be over-
looked. They are independent resources that are completely
devoted to visualization tasks. They are very fast, especially
on smaller data sets. They can also have their hardware-
accelerated rendering component upgraded regularly at rela-
tively low cost by replacing the graphics hardware.

We believe that these advantages and disadvantages will
increasingly have to be evaluated. We think that interactive
visualization on supercomputers is becoming a distinct possi-
bility. With a community effort to make this approach a reality,
we believe we can reduce costs and improve the visualization
and analysis process.

VII. FUTURE WORK AND CONCLUSIONS

Work is currently ongoing to integrate the IBM Cell-based
raytracer into VTK/PV for visualization on Roadrunner plat-
form. Once this is complete we will run the same performance
testing as for the Manta raytracer. We want to evaluate what
role raytracing will play in petascale visualization. Given
raytracers can provide extremely good performance on su-
percomputing architectures, we will explore how visualization
algorithms can be integrated into raytracers.

Initial results show that rendering software optimized for
multi-core CPU processors provides competitive performance
to GPUs for the parallel rendering of massive data. Therefore
the current architectural trend of multi-core processors sug-
gests multi-core based supercomputers will be able to provide

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 08,2010 at 17:46:34 UTC from |IEEE Xplore. Restrictions apply.

interactive visualization and rendering support now and in the
future.

ACKNOWLEDGMENTS

This work was supported by the DOE NNSA ASC program
and the DOE Office of Science.

REFERENCES

[1] James Ahrens and James Painter. Efficient sort-last rendering using
compression-based image compositing. In Proceedings of the 2nd
Eurographics Workshop on Parallel Graphics and Visualization, pages
145-151, 1998.

[2] J. Bigler, A. Stephens, and S.G. Parker. Design for parallel interactive
ray tracing systems. Interactive Ray Tracing 2006, IEEE Symposium
on, pages 187-196, Sept. 2006.

[3] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and
D. J. Kerbyson. 0.374 pflop/s trillion-particle kinetic modeling of laser
plasma interaction on roadrunner. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1-11, Piscataway, NJ,
USA, 2008. IEEE Press.

[4] X. Cavin, C. Mion, and A. Filbois. Cots cluster-based sort-last rendering:
performance evaluation and pipelined implementation. Visualization,
2005. VIS 05. IEEE, pages 111-118, Oct. 2005.

[5] Philip D. Heermann. Production visualization for the asci one teraflops
machine. In VIS ’98: Proceedings of the conference on Visualization
'98, pages 459-462, Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

[6] Alan Heirich and Laurent Moll. Scalable distributed visualization using
off-the-shelf components. In PVGS ’99: Proceedings of the 1999
IEEE symposium on Parallel visualization and graphics, pages 55-59,
Washington, DC, USA, 1999. IEEE Computer Society.

[71 Kwan liu Ma, James S. Painter, Charles D. Hansen, and Michael F.
Krogh. Parallel volume rendering using binary-swap compositing. /EEE
Computer Graphics and Applications, 14:59-68, 1994.

[8] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A
sorting classification of parallel rendering. IEEE Comput. Graph. Appl.,
14(4):23-32, 1994.

[9] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J.
Migdal. Infinitereality: a real-time graphics system. In SIGGRAPH
'97: Proceedings of the 24th annual conference on Computer graphics
and interactive techniques, pages 293-302, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

[10] Ulrich Neumann. Communication costs for parallel volume-rendering
algorithms. IEEE Comput. Graph. Appl., 14(4):49-58, 1994.

[11] Sriram Swaminarayan, Kai Kadau, Timothy C. Germann, and Gordon C.
Fossum. 369 tflop/s molecular dynamics simulations on the roadrunner
general-purpose heterogeneous supercomputer. In SC '08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, pages 1-10,
Piscataway, NJ, USA, 2008. IEEE Press.

[12] Hongfeng Yu, Chaoli Wang, and Kwan-Liu Ma. Massively parallel
volume rendering using 2-3 swap image compositing. In SC ’'08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1-11, Piscataway, NJ, USA, 2008. IEEE Press.

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 08,2010 at 17:46:34 UTC from |IEEE Xplore. Restrictions apply.

	7.1-cover
	7.1-paper

	laur #: 10-02237
	title: Petascale visualization: Approaches and initial results
	authors: James P. Ahrens 113788 CCS-1
Li-Ta Lo 194699 CCS-1
Boonthanome Nouanesengsy Ohio State University
John Patchett 148176 CCS-1
Allen McPherson 107908 CCS-1
	submitted to: Workshop on Ultrascale Visualization, pp.24-28, 16 Nov. 2008
	menu warning:

